
十通道多功能称重&测力数字变送器

使用说明书

—— 阅读说明书之前请先阅读注释 ——

目录

第一	章 概述	<u> </u>	1
	特点		1
	注意事	项	1
第二	章 技术	≒参数	3
	2.1、	规格参数	3
	2.2、	安装尺寸 (单位:mm)	4
	2.3、	面贴示意图	5
	2.3.1、	端子及按键定义说明	5
	2.4、	接线示意图	6
	2.4.1、	四线制传感器接线图	6
	2.4.2、	RS232跟上位机连接的接法	6
	2.4.3、	RS485跟上位机连接的接法	6
第三	章 操作	F面板	7
	3.1.	操作面板示意图	7
	3.1.1.	操作面板及按键说明	
	3.2.	操作说明	
	J (进入通道参数设置(基本参数,每个通道的参数均可独立设置)	_
	-	进入通讯设置	
		有砝码校准(首先选择要标定的通道)	
	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		无砝码校准(首先选择要标定的通道)	
	3.2.5、	多段校准(最高50段校准)1	1

第四章 菜	单说明12
4.1	一级菜单
4.2、	二级菜单
4.2.1、	(基本参数 A-Group)12
4.2.2、	(通讯参数 E-Group)14
4.2.3、	(查看传感器当前mV值 F-Group)14
第五章 串	行通讯
5.1、	Modbus-RTU通讯
5.2、	0x03及0x10指令说明16
5.2.1、	读寄存器0x03功能码(示例)16
5.2.2、	写寄存器0x10功能码(示例)17
5.3、	指令示例
5.3.1、	读取十个通道实时值的指令18
5.3.2、	读取十个通道峰值的指令18
5.3.3、	读取十个通道谷值的指令19
5.4、	Modbus通讯准流程说明
5.4.1、	有砝码标定步骤(标定1通道), 指令参考5.5章节20
5.4.2、	无砝码标定步骤(标定1通道), 指令参考5.5章节20
5.4.3、	多段标定步骤(标定1通道),指令参考注5.5章节21
5.5、	常用指令参考
5.6、	寄存器地址与数据对照表23
<i>**</i>	· ALWED
第八草 具	他说明31
6.1、	注解说明
6.2、	故障报警信息与排除31

第一章 概述

十通道数字变送器,兼顾称重,测力两方面功能,具有操作简单,精度高,抗干扰能力强,低温漂,同时支持高达50段传感器的非线性修正,支持外接手持操作面板等特点。该变送器采用了24位高精度模数转换器及成熟的滤波技术,将传感器输出的毫伏级信号进滤波及放大处理,并将其转换成的数字信号,通过标准的工业通讯协议与PLC或HMI触摸屏组成称重/测力的控制系统。

特点

- ◆ 同时拥有RS-232及RS-485两种通讯方式:
- ◆ 支持外置手持操作面板进行标定及参数设置;
- ◆ 使用铝合金外壳,使产品拥有较强的抗干扰能力;
- ◆ 成熟的滤波算法, 让产品拥有更高的精度;
- ◆ 转换速度最快可达1280Hz;
- ◆ 支持Modbus-RTU协议。

注意事项

1、开箱

- 开箱后,请妥善保管装箱单、合格证、说明书及附件配件。
- 2、安装注意事项
 - 本控制器适合固定安装在电气柜等的控制面板上。
- 安装控制器的地点应无振动源,应有防日晒、防高温烘烤、防冻、防潮、防雨淋措施。

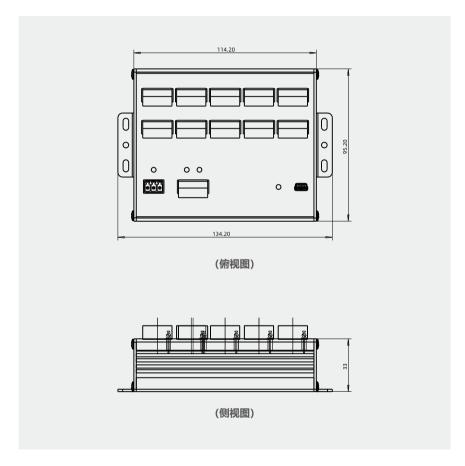
3、配线注意事项

- 各接地端务必良好接地,确保所有连接准确无误、牢固可靠。
- 本控制器不要与易产生干扰的用电设备共用配电箱、供电插、电源线路(包括接地线)等,以免其他用电设备影响本控制器的性能。无法避免时,应在本控制器的供电回路中增加电源滤波器进行隔离。
- 应尽量缩短传感器电缆线的长度,并要远离电源线和控制线,以避免可能的 干扰。

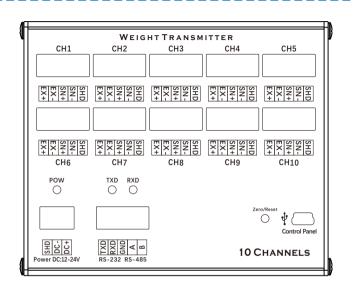
4、使用注意事项

- 要尽量保持供电电源的稳定性,避免电压过高、过低,波形畸变等不良现象。
- 无论在通电或断电情况下,请勿自行拆开本控制器,以免危及您的人身安全 或对本设备造成损坏。

5、维护注意事项


- 非本公司人员或非专业人员不要对本控制器进行调校或设置,以免造成失准或失调。
- 不能用烃类、醇类、酮类等有机溶剂或强酸、强碱类溶液清洗本控制器,以 免损坏本控制器的机壳、面板及内部元件。
- 本控制器将不接受您对其进行自行修理或修改。如果设备出现故障,请您 遵照本说明书进行排除或与我们联系,否则您将失去售后服务的优惠条件。
- 本控制器若闲置不用,每隔一月至少应通电一次,每次一小时以上,以驱除其内部潮气。

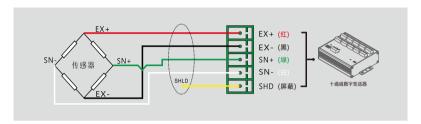
第二章 技术参数


2.1、规格参数

参数	技术指标
Ad通道数	10路
A/D分辨率	24bit-Delta-Sigma(24位)
A/D转换速度	1280Hz (可调10Hz,40Hz,640Hz)
供电电压	DC 9-30V
传感器信号范围	±3.6mV/V
传感器激励电压	5VDC±1%, 100mA
传感器输入负载	每路1-4个350Ω传感器
输入灵敏度	0.4mV/V~6mV/V
可读性	1/90000
输出线性	<0.002%
综合精度	优于0.01%
模拟量输出分辨率	无
模拟量输出	无
输入端口	无
输出端口	无
满量程温度漂移	≤10ppm/°C
零点温度漂移	≤10µV/°C
整机功耗	≤10W
通讯方式	RS-232及RS-485
通讯协议	Modbus-RTU
波特率	4800,9600,19200(默认),38400,57600,115200
外形尺寸	114.2*95.2*33mm
工作温度范围	-20~70°C
外壳材料	铝合金

2.2、安装尺寸(单位:mm)

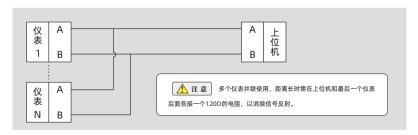
2.3、面贴示意图



◆ 2.3.1、端子及按键定义说明


标识符	上排端口定义	标识符	下排端口定义
Т	RS-232 TXD	POW	电源指示灯
R	RS-232 RXD		短按清零
GND	RS-232 GND	Zero/Rest	长按3秒以上恢复出厂设置, 但会保留传感器标定数据。
А	RS-485 A (+)	SHD	传感器屏蔽线
В	RS-485 B (-)	SN-	传感器信号负
SHD	电源 DC 地线	SN+	传感器信号正
DC-	电源 DC-	EX-	传感器激励负
DC+	电源 DC+	EX+	传感器激励正

2.4、接线示意图


◆ 2.4.1、四线制传感器接线图

◆ 2.4.2、RS232跟上位机连接的接法

◆ 2.4.3、RS485跟上位机连接的接法

第三章 操作面板

3.1、操作面板示意图

◆ 3.1.1、操作面板及按键说明

功能一:长按3秒开始标定 功能二: 调整数值位置

功能三: 激活编辑

功能一: 调整数值大小

功能二: 选择菜单

功能三: 切换显示的通道

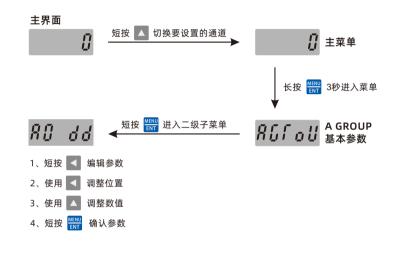
功能一: 取消或返回

功能二: 清零

功能一:长按进入基本参数设置

功能二: 短按进入通讯参数设置

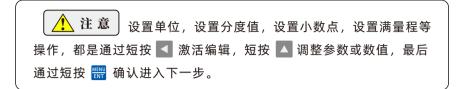
功能三: 确认键

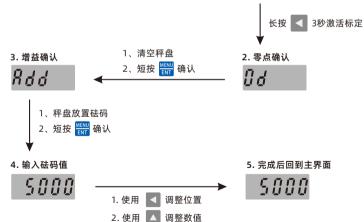


M1-M10指示灯表示当前数码管显示的通道;

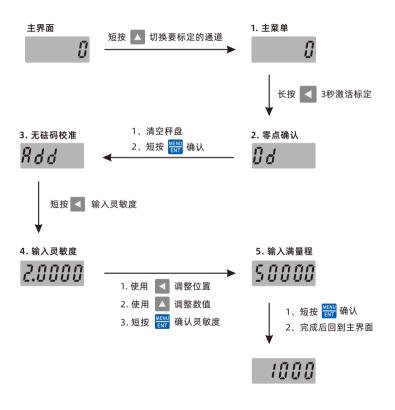

M1和M8同时亮表示M9,以此类推。

3.2、操作说明

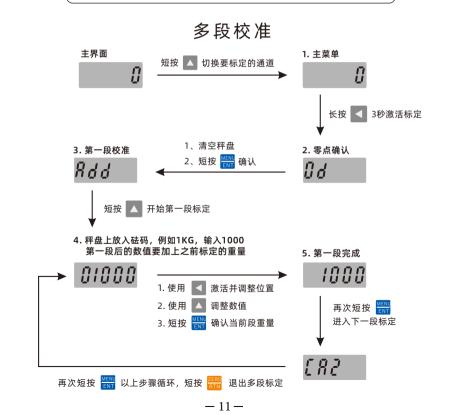

◆ 3.2.1、进入通道参数设置(基本参数,每个通道的参数均可独立设置)


◆ 3.2.2、进入通讯设置

◆ 3.2.3、有砝码校准(首先选择要标定的通道)



3. 短按 🙌 确认砝码值


◆ 3.2.4、无砝码校准(首先选择要标定的通道)

无砝码校准

◆ 3.2.5、多段校准(最高50段校准)

注意 可以校准任意数量的段,如只校准到第5段,输入完成第五段实际值后,短按取消退出标定即可。

第四章 菜单说明

4.1、一级菜单

菜单标识	菜单说明
86foU	基本参数,通用参数
EGFoU	串口通讯相关参数
FGFoU	查看传感器mV值参数

4.2、二级菜单

◆ 4.2.1、(基本参数 A-Group)

注意 设置A组菜单要先选择通道,每个通道的A组参数均为独立设置,互不影响。

代码	参数名称	参数解释	取值范围	初始值
80 dd	分度值	相邻两个示值的差值	1, 2, 5, 10, 20, 50	1
A Idob	小数位	示值的小数位数	0, 1, 2, 3, 4, 5	0
A2 FUL	满量程	当前通道的最大称量范围	1-99999	50000

代码	参数名称	参数解释	取值范围	初始值
A3CLF	置零范围	置零操作的界限	0-99999	50000
A45CL	开机置零范围	上电置零操作的界限,为0时无效	0-99999	0
ASZLF	自动置零范围	ZLF自动置零的范围,ZLT自动置零的时间,设重量值为w, 当w连续或超过自动置零时间	0-99	0
A657F	自动置零时间	满足ZLF>w>-ZLF,并且稳定,本机将自动置为零	0.0-9.9	0.0
AJ PF	判稳范围	判断数据稳定的界限,超过此 界限为动态	0.0-9.9	2.0
AB PŁ	判稳时间	判断数据稳定的时间	0.0-9.9	0.3
R9 FCE	转换频率	AD转换的频率	10, 40, 650, 1280	40
ARF iL	滤波系数	减少不稳定的称重数据波动的能力	0-9	5
AP bl	峰值复位阀值	当重量小于该值时,准备开始 新的峰值测量	0~59999	10
AC ur	谷值复位阀值	当重量大于负的该值时,准备 开始新的谷值测量	0~59999	10
		- 13 -		

◆ 4.2.2、(通讯参数 E-Group)

代码	参数名称	参数解释	取值范围	初始值
EO P9F	波特率	串口通讯位数据传输量	4800,9600,19200, 38400,57600,115200	19200
El B9L	通讯地址	MODBUS通讯时的从站地址	1~99	1
ES 570	数据格式	数据位 停止位 校验位	8N1、801、8E1、8N2 701、7E1、7N2	8N1

◆ 4.2.3、(查看传感器当前mV值 F-Group)

可以查看传感器当前mV值,按左箭头和上箭头切换显示的通道:

第五章 串行通讯

5.1、Modbus-RTU通讯

1、本控制器支持主从形式的标准Modbus-RTU串行通讯协议中的寄存器读写功能 (支持功能码0x03、0x10)。通常适于在总线网络中作为从机与主机进行数 据交换。

2、格式: 默认: 8N1, 19200波特率

显示格式	说明
8N1 (默认)	数据位8, 无校验, 1停止位
801	数据位8,奇校验,1停止位
8E1	数据位8, 偶校验, 1停止位
8N2	数据位8,无校验,2停止位
701	数据位7,奇校验,1停止位
7E1	数据位7, 偶校验, 1停止位
7N2	数据位7,无校验,2停止位
波特率: 4800,9600,19	200(默认), 38400, 57600, 115200

5.2、0x03及0x10指令说明

◆ 5.2.1、读寄存器0x03功能码 (示例)

◇ 读取格式

字节	模块地址	功能码	要读取的寄存器 起始地址		要读取的寄存器 个数		CRC-16校验码 注意: 低位字节 在前,高位字节在后	
定义	地址	0x03	高8位	低8位	高8位	低8位	低8位	高8位
示例	01	03	00	ОВ	00	02	B5	C9

◇ 模块返回格式

字节	模块 地址	功能码	表示后面 数据字节 的个数	数 据				CRC-16校验码 注意: 低位字节 在前,高位字节在后	
定义	地址	0x03	N	数据1	数据2	数据N-1	数据N	低8位	高8位
示例	01	03	04	00	00	0A	0B	BD	54

注4: 示例中回传的数据为4个字节

回传解析:如:第一通道的实时测量值,00 00 0A 0B

计算方法: 00×256³+00×256²+ 0A×256+0B =2571

◆ 5.2.2、写寄存器0x10功能码 (示例)

◇ 写入格式

字节	模块 地址	功能码	要写入的寄存器 起始地址		里 5 人的各位类		表示后面 数据字节 的个数	到	注意: 化	5校验码 K位字节 立字节在后
定义	地址	0x10	高8位	低8位	高8位	低8位	N	数据字节	低8位	高8位
示例	01	10	00	ОВ	00	02	04	00 00 00 00	B2	1C

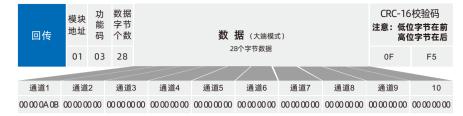
◇ 模块返回格式

字节	模块地址	功能码	寄存器起	己始地址	寄存器	 各个数	注意: 化	6校验码 低位字节 立字节在后
定义	地址	0x10	高8位	低8位	高8位	低8位	低8位	高8位
示例	01	10	00	ОВ	00	02	30	0A

- 1、Modbus-RTU采用CRC方法计算校验码,其校验范围为数据帧的 所有字节,并且忽略了信息中单个字符数据的奇偶校验方法。
- 2、如果发送至仪表的地址不符或者CRC校验出错,仪表将不做出响应。

5.3、指令示例

◆5.3.1、读取**实时值**的指令 (十个通道示例)


发送	模块	地址	上功	能码	寄径	字器起始地	址	寄存器个	〉数	CRC-16 注意: 低位 高位	, ,,
及达	C	01			00	0	В	00	14	34	07
	01 03 00 0B 0		3 00 14	4 34 07 从11号寄存器读取10个通道的实时				通道的实时值	直,共读取20个寄存器		
回传	模块 地址	功能码	数据 字节 个数			~~	据(大端模式	式)		注意: 低值	校验码 位字节在前 位字节在后
	01	03	28			2	8个字节数据			0F	F5
							/ \				
通道1	通道	2	通道3	3 3	通道4	通道5	通道6	通道7	通道8	通道9	10

回传解析: 如:第一通道的实时测量值,00 00 0A 0B

计算方法: 00×256³+00×256²+ 0A×256+0B =2571

◆ 5.3.2、读取峰值的指令 (十个通道示例)

发送	地址	功能码	起始	地址	寄存器	 各个数	CRC-16校验码 注意: 低位字节在前 高位字节在后	
及达	01	03	00	2B	00	14	34	CD
	01 03	00 2B 00 14	34 CD	从43号寄	存器读取10	个通道的峰份	值,共读取2	10个寄存器

回传解析: 如:第一通道的实时测量值,00 00 0A 0B

计算方法: 00×256³+00×256²+ 0A×256+0B =2571

◆ 5.3.3、读取谷值的指令 (十个通道示例)

אראא	地	址	功育	6码		起始地址			寄存器	客个数	CRC-16 注意: 低位 高位	
发送	01		0	3	00		4B	(00	14	35	D3
	(01 03	00 4B	00 14	35 D3	从	75号寄	存器i	直,共读取2	,共读取20个寄存器		
回传	模块 地址	功能码	数据字节 个数					端模式)		注意: 低	6校验码 位字节在前 位字节在后
	01	03	28				28个字节	数据			0F	F5
通道1	通道	2	通道3	3 通道4 通		通道5	通道	<u>1</u> 6	通道7	通道8	通道9	10

回传解析: 如:第一通道的实时测量值,00 00 0A 0B

计算方法: 00×256³+00×256²+ 0A×256+0B =2571

5.4、Modbus通讯准流程说明

- ◆ 5.4.1、有砝码标定步骤(标定1通道) **指令参考5.5章节**
- 1、107寄存器写入1(要操作的通道是1通道,所以写入1,如果要标定2通道,则写入2,其他通道以此类推)。
- 2、清空秤盘后,113寄存器写入1标定零点。
- 3、秤盘放上1000g砝码, 108号寄存器写入1000。
- 4、113号寄存器写入2确认增益。
- 5、标定完成。
- ◆ 5.4.2、无砝码标定步骤(标定1通道) **指令参考5.5章节**
- 1、107寄存器写入1(要操作的通道是1通道,所以写入1,如果要标定2通道,则写入2,其他通道以此类推)。
- 2、清空秤盘后,113寄存器写入1标定零点。
- 3、111号寄存器写入传感器满量程.(4字节)。
- 4、110号寄存器写入传感器灵敏度(2字节)。
- 5、113号寄存器写入8确认。
- 6、完成标定

- ◆ 5.4.3、多段标定步骤(标定1通道) 指令参考5.5章节
- 1、107寄存器写入1(要操作的通道是1通道,所以写入1,如果要标定2通道,则写入2,其他通道以此类推)。
- 2、清空秤盘后,113寄存器写入1标定零点。
- **3、**194号寄存器写入要标定的段,例如标定第一段就写1,第二段就写2,其他 段以此类推。
- 4、秤盘上放入砝码,并向195号寄存器写入当前段的砝码值。
- 5、199号寄存器写100,则1段生效。
- 6、重复2、3、4步,完成其他段标定。

注意

如果只标定5段,则第6段需要写入0,并向199号

寄存器写100生效。任意一段可单独标定,不影响其他段。

5.5、常用指令参考

◆ 107号寄存器(设置要操作的通道)写入指令(例)

107寄存器写1指令	01 10 00 6B 00 01 02 00 01 6F 4B
107寄存器写2指令	01 10 00 6B 00 01 02 00 02 2F 4A
107寄存器写3指令	01 10 00 6B 00 01 02 00 03 EE 8A
107寄存器写4指令	01 10 00 6B 00 01 02 00 04 AF 48

◆ 113号寄存器(标定操作)写入指令(例)

113寄存器写1指令	01 10 00 71 00 01 02 00 01 6D 71 (标零点)
113寄存器写2指令	01 10 00 71 00 01 02 00 02 2D 70 (标增益)
113寄存器写4指令	01 10 00 71 00 01 02 00 04 AD 72 (清零)
113寄存器写8指令	01 10 00 71 00 01 02 00 08 AD 77 (标灵敏度)

◆ 199号寄存器写入指令(例)

199寄存器写100指令 01 10 00 C7 00 01 02 00 64 B7 0C (确认段生效指令)

5.6、 寄存器地址与数据对照表

寄存器 地 址	PLC 地 址	数据类型	名 称	说 明	范 围 (十进制)	属性	默认值 (十进制)	
0	40001	2字节 整型	Modbus 从机地址	若忘记地址,可用地址255 通讯,然后再修改地址	0-254	读写	1	
1	40002	2字节 整型	通讯波特率	串口通讯的波特率	0: 4800 1: 9600 2: 19200 3: 38400 4: 57600 5: 115200	读写	2	全
2	40003	2字节 整型	数据格式	串口通讯的协议地址	0:7E1 4:801 1:701 5:8N1 2:7N2 6:8N2	读写	5	局
3	40004	2字节 整型	通讯协议	-	0:Modbus-RTU	读写	0	参
4	40005	2字节 整型	发送间隔	-	-	读写	-	
5	40006	2字节 整型	通道数	设备的通道数	-	只读	当前 通道数	数
6	40007	2字节 整型	恢复 出厂设置	写111恢复出厂值,恢复 后需要重新标定传感器	-	只写	-	
7	40008	4字节 整型	版本号	固件版本	-	只读	当前 版本号	
9	40010	2字节整型	1-16路 传感器 稳定状态	最低位对应1通道 最高位对应16通道的 稳定状态 0:不稳定 1:稳定	0~65535	只读	0	

寄存器 地 址	PLC 地 址	数据类型	名 称	说 明	范 围 (十进制)	属性	默认值 (十进制)
10	40011	2字节	1-16路	最低位对应1通道 最高位对应16通道的在线状态	0~65535	口法	0
10	10 40011		0~65535	只误	0		
11	40012	4字节 整型	1通道 实时值	写0清零	-	读写	-
13	40014	4字节 整型	2通道 实时值	写0清零	-	读写	-
15	40016	4字节 整型	3通道 实时值	写0清零	-	读写	-
17	40018	4字节 整型	4通道 实时值	写0清零	-	读写	-
19	40020	4字节 整型	5通道 实时值	写0清零	-	读写	-
21	40022	4字节 整型	6通道 实时值	写0清零	-	读写	-
23	40024	4字节 整型	7通道 实时值	写0清零	-	读写	-
25	40026	4字节 整型	8通道 实时值	写0清零	-	读写	-
27	40028	4字节 整型	9通道 实时值	写0清零	-	读写	-
29	40030	4字节 整型	10通道 实时值	写0清零	-	读写	-
43	40044	4字节 整型	1通道 峰值	写0清零	-	读写	-
45	40046	4字节 整型	2通道 峰值	写0清零	_	读写	_
				- 24 -			

	寄花地	
	11	4
	11	5
	11	6
	11	7
	19	94
	19	95
	19	7
	19	9

PLC

地址

40116

40117

40118

40196

40198

40200

整型

2字节 整型

数 据

类 型

名 称

输入口状态

输出口状态

仪表选项

写锁

段号(1~50)

N段实际

重量值

N段mv值

标定段号

对应的段

范围

(十进制)

掉电不记忆.

1-50

-99999~

99999

-99999~

99999

0, 100

说明

0:3秤仪表

1: 4秤仪表

0: 不可写

需要标定的段序号

要标定的第N段的实际重量值

例如第3段,设定107需操作的通

道序号,然后把段号设为3,段实

际重量值寄存器写入实际重量,

然后向本寄存器写入100,则第1段

标定生效。其他段同样操作。

-27-

要标定的第N段的毫伏值

1: 可写

默认值

(十进制)

_

0

0

全

参

数

属性

只读

只读

读写

读写

可读写

可读写

可读写

可读写

范围

(十进制)

1-16

1-999999

指令参考

步骤见

5.5章

1000-64999 可读写

1-999999 可读写

寄存器

地址

107

108

110

111

113

PLC

地址

40088

40090

40092

40094

40108

40109

40111

40112

40114

数 据

类 型

整型

4字节

整型

整型

4字节

整型

2字节

整型

整型

2字节

整型

4字节

整型

2字节

整型

名 称

7诵道

谷值

8诵道

谷值

9通道

谷值

10通道

谷值

需操作的

通道序号

砝码值

传感器

灵敏度

传感器

满量程

标定

(使用此寄

存器进行标

定时,需要

先向107号

寄存器写入

要标定的通

道序号)

有砝码标定

步骤见

1.4.1 章

无砝码标定

步骤见

1.4.2章

说明

使用113号寄存器操作标定时。

标定操作时的砝码值

先向此地址写入要操作的通道序号

用干灵敏度标定, 为实际灵敏

例: 灵敏度为1.9000,则应输

无砝码标定时的传感器量程

写1 为标定需标定通道的零点确认,

在标定前要清空对应秤台:

在标定前需在对应秤台上放

上砝码, 将砝码值写入上个

写2 为标需标定诵道的增益确认,

写4 为在清零范围内清需标定通

写8 为标需标定通道的灵敏度标定

写16 所有通道实时值清零;

写32 所有通道峰值清零;

写64 所有通道谷值清零。

-26-

确认, 在标定前需输入传感器

的灵敏度和对应的满量程值;

砝码值寄存器中:

道的重量值:

写0清零

写0清零

写0清零

写0清零

度值*10000

入19000

默认值

(十进制)

O

0

属性

读写

读写

读写

读写

读写

读写

只写

	- 	DI G	** +D			# 8		MIN.L /±
	存器 也 址	PLC 地 址	数 据 类 型	名 称	说 明	范 围 (十进制)	属性	默认值 (十进制)
					₹一路均可独立设置。 要操作的参数寄存器地址 = (第一通道	道参数地址)	+ (n-1):	x 100
ı		二通道的			= 200 + (2-1) *100 = 300			
育	◆ 第	三通道的	实时值書	2-1)*100=4 5存器地址=2 3-1)*100=4	03+ (3-1) *100 = 403			
Ż _		参数照此						
	200	40201	2字节 整型	测量状态	03位: 0:不稳定 1:稳定 04位: 0:传感器正常 1:传感器错误 05-15位为定值0.	-	只读	-
			2字节			0: 000000 1: 00000.0 2: 0000.00		
五	201	40202	整型	小数点	示值的小数位数	3: 000.000 4: 00.0000 5: 0.00000	可读写	· 读写 0
AL.	202	40203	2字节 整型	分度值	相邻两个示值的差值	1、2、5、 10、20、50	可读写	1
女	203	40204	4字节 整型	当前实时 测量值	(写0清零)	-	可读写	-
	205	40206	2字节 整型	当前实时 测量值 (范围小)	与203号寄存器数据一样,只是提供的数据范围更小;范围:-32767到32767	-	只读	-
	209	40210	4字节 整型	采样码	AD输出未经滤波的采样码	-	只读	-
	211	40212	4字节 整型	峰值	写0清零	-	读写	-
					- 28 -			

名 称	况 明	(十进制)	禹 性	(十进制)
传感器 灵敏度	用于灵敏度标定,为实际灵敏度值*10000例:灵敏度为1.9000,则应输入19000	1000-64999	可读写	0
传感器 满量程	无砝码标定时的传感器量程	1-999999	可读写	0
砝码值	有砝码标定时的砝码值,不考虑小数点,如砝码重量为10.50,则写1050即可	1-999999	可读写	0
标定 (此种, 只对 操作道域器) 传感器)	写1 为标定需标定通道的零点确认,在标定前要清空对应秤台; 写2 为标需标定通道的增益确认,在标定前需在对应平台上放上在砝码,将在码中; 写4 为在清零范围内清需标定通道的更量值; 写8 为标需标定通道的灵敏度标定确认,在标定前需输入传感器的灵敏度和对应的满量程值;	1,2,4,8	可读写	0
	- 30 -			

PLC 数据

地址 地址 类型

237 40238

240 40241

40239

40243

寄存器

第六章 其他说明

6.1、注解说明

默认值

范围

通讯数据类型解释

2 字节整型数据都为 16 位无符号整型数据; 4 字节长整型都为 32 位有符号长整型数据。

6.2、故障报警信息与排除

ERR01:过载故障,请检查传感器是否超载,或将满量程调大。

ERR02: 传感器故障或接线错误,请检查传感器或接线是否正确,

接触是否良好。

ERR03: 出现此错误报警为硬件故障,请联系我们.