SG590 失重控制器说明书

目录

- .		基本信息	4
	1.1.	特性与规格	4
	1.2.	前面板	5
	1.3.	接线端口	6
		1.3.1. 传感器接线方法	7
		1.3.2. 开关量接线方法	8
		1.3.3. 串口接线方法	8
	1.4.	安装尺寸	9
<u> </u>		功能描述	10
三.		基本称重参数	11
四.		开关量原理与功能	11
	4.1	输入开关量定义与功能	11
	4.2	输出开关量定义与功能	14
五.		硬件模块	16
	5.1	RS232/RS485	16
	5.2	输出模拟量	17
		5.2.1 输出范围设置	17
		5.2.2 输出自定义	18
六.		功能参数	19
	6.1	供料机构	20
	6.2	手动清料	22
	6.3	架桥搅拌	23
七.	配力	5功能	24
	7.1	配方号	24
	7.2	工作模式	24
		7.2.1 连续标准模式	
		7.2.2 模拟量联动模式	25
		7.2.3 模拟量主控模式	25

7.2.4 容积模式	26
7.3 给定流量、分流比、目标流量	26
7.3.1 配比模式	26
7.3 给定流量、分流比、目标流量	27
7.3.1 配比模式	27
7.3.2 独立流量模式	28
7.3.3 流量单位和流量小数点	28
7.4 生产产量	29
7.5 PID 设置	30
7.6 模拟量功能	31
7.6.1 流量控制	32
7.6.2 流量显示	32
7.6.3 重量显示	33
7.7 供料设置	33
7.8 流量监测	35
7.8.1 超欠差	35
7.8.2 流量建立监控	36
7.8.3 误触碰功能	37
7.8.4 欠载重量	37
7.9 流量标定	37
7.10 启动速度设置	38
7.10.1 低速启动	38
7.10.2 延迟启动	38
7.10.3 快速启动	39
7.11 流程设置	39
7.12 累计脉冲功能	40
7.13 变频器故障检测	41
7.14 逻辑编程	41
【附录 1】时间与版本	43

一. 基本信息

1.1.特性与规格

失重秤是采用失重方式进行物料流量控制、使物料按设定目标均匀 流动的应用形式

SG590 有如下基本特性:

工作电压: DC24V 称重通道: 单通道

● 传感器: DC5V/4 线制电阻应变桥式称重传感器

● 开关量: 3

● 扩展口 1: 固定 RS485 通信接口。支持 Modbus-RTU 协议。

● 扩展口 2: 选配串口,具有 RS485 和 RS232 接口可供选择。 均支持 Modbus-RTU 协议。

● 安装方式: DIN35 卡扣式安装

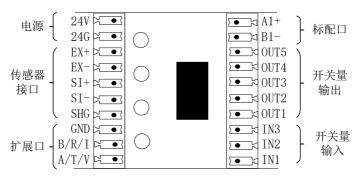
详细技术规格如下:

传感器激励	DC5V±10%/120mA 驱动电流/可并接 8 个
	350Ω规格的传感器
适应传感器灵敏度	2mV/V 或 3mV/V
输入信号范围	$0\sim15\text{mV}$
输入灵敏度	0. 5uV/d
非线性	0.02%FS (3mV/V 时)
零点漂移	<0.5 µ V/℃
增益漂移	<10PPM/°C
AD 转换速率	480 次/秒
最高显示分辨率	1/100000
产品精度等级	
工作电压	DC24V (18V~30V 兼容)
产品功耗	<5W

工作温度	-10°C~45°C
储存温度	-20°C~60°C
湿度	90%RH 以内 (无凝露)

1.2.前面板

仪表前面板由液晶显示,2个指示灯和4个按键组成。说明如下:

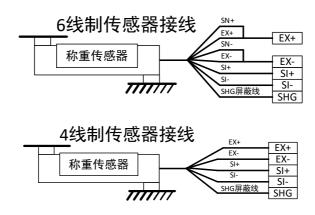

	指示灯			
通讯	当串口收到指令并响应后指示灯亮一次			
电源	通电长亮			
	按键			
(A)	1. 菜单界面按键一次退出到上一级菜单。			
清零/退出	2. 待机状态按键一次执行清零操作。			
	3. 待机状态长按执行标定零点操作。			
	4. 数值输入界面,长按清除输入数据。			
	5. 有报警信息时可清除报警。			
	1. 菜单及选择界面,向上移动光标。			
选择/向上	2. 数值输入界面,使闪烁数字加1。			
	1. 菜单及选择界面,向下移动光标。			
模式/向下	2. 数值输入界面,向右移动闪烁光标。			

一确认

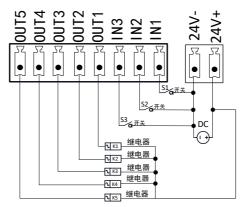
- 1. 菜单及选择界面,确认进入当前选项。
- 2. 数值输入及选项界面,确认保存当前数据。

1.3.接线端口

接线端口如下图所示:



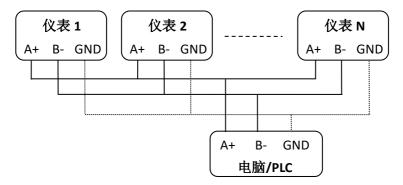
接线端口说明如下:


类别	接口	说明
电源	24V	DC24V 电源正
电源	24G	DC24V 电源负
	EX+	传感器激励正
在 最现	EX-	传感器激励负
传感器 接口	SI+	传感器信号正
按口	SI-	传感器信号负
	SHG	传感器屏蔽线
	GND	RS232 的 GND 引脚
扩展口	B/R/I	选配 RS232 时为 RX
(RS485/RS232		选配 RS485 时为 B-
可选)	A/T/V	选配 RS232 时为 TX
		选配 RS485 时为 A+
标配口1	A1+	RS485 A+
(RS485)	B1-	RS485 B-

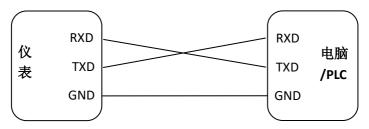
	OUT1	开关量输出1	Q1. 运行/停止
	OUT2	开关量输出 2	Q2. 变频器启停
开 关量输 出	OUT3	开关量输出3	Q3. 供料
	OUT4	开关量输出 4	Q4. 供料不足
	OUT5	开关量输出 5	Q5. 供料充足
	IN1	开关量输入1	I1. 运行/停止
开关量输入	IN2	开关量输入2	I2. 清零
	IN3	开关量输入3	I4. 供料阀门开关

1.3.1.传感器接线方法

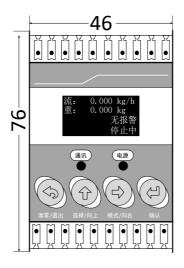
1.3.2.开关量接线方法


输入开关量驱动的外部电路要满足如下两个要点:

- 1. 外部电路要和控制器共地:
- 2. 外部电路输入低电平时,表示输入有效,否则表示输入无效。输出开关量驱动的外部电路要满足如下两个要点:
 - 1. 外部电路要和控制器共地;
 - 2. 开关量输出有效时为低电平。

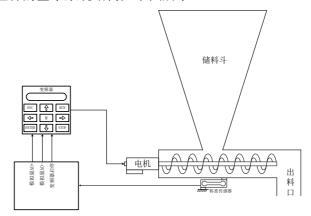

注意:每一路开关量输出口的驱动能力最大输出 500mA,连接负载时请注意负载的功率,超过输出口的驱动能力使用时可能造成开关量输出口损坏。

1.3.3.串口接线方法


RS485 接线示意:

RS232 接线示意:

1.4. 安装尺寸



9

二. 功能描述

失重系统结构与工作原理

失重秤的基本系统结构如下图所示:

工作原理如下:

- 1. 启动运行后, SG590 输出模拟量到变频器, 控制变频器带动电机转动, 电机转动带动绞龙, 使得物料从储料斗中流出, 重量持续减少;
 - 2. SG590 根据减少的重量计算出实时流量:
- 3. 将实时流量跟目标流量进行比较,若实时流量>目标流量,则减少模拟量,降低电机转速,使得出料速度降低;若实时流量<目标流量,则增加模拟量,提升电机转速,使得出料速度增加。如此往复调节,实现实时流量等于目标流量的目的。

三. 基本称重参数

基本称重参数跟称重传感器和重量有关,在"2基本称重参数"菜单项里面,各参数如下:

序号	参数	设置范围	初值
2.1	滤波等级	0~9	3
2.2	判稳范围	0~9	1
2.3	判稳时间	0.0~99.9	0.3
2.4	追零范围	0~99	0
2.5	清零范围	0~99%	50
2.6	上电清零开关	0~1	0

【滤波等级】该参数用于控制滤波的强度。0时无滤波,效果最差:9为滤波最强,效果最好。

【判稳范围】用于判断重量是否稳定的波动范围。

【判稳时间】用于判断重量是否稳定的时间区间。

【追零范围】在空秤状态下,一定时间内重量值处于设置的数值 内时,则会进行清零。用于解决秤的重量值飘移问题。

【清零范围】最大量程的百分比,在清零的时候,如果重量低于"最大量程×清零范围",则清零成功,否则不能清零。

【上电自动清零】用于控制上电时是否进行一次自动清零。

四. 开关量原理与功能

4.1 输入开关量定义与功能

序号	参数 说明		初值
3.1	输入开关量		
3.1.1	IN1	开关量输入口功能定	I1. 运行/停止
3.1.2	IN2	义。	I2. 清零

3.1.3	IN3	选项列表详见下表。	I4. 供料阀门开关

每一个输入开关量的功能都可以设定,设置功能可以通过显示按键实现,也可以通过 Modbus 通信实现,通过 Modbus 通信设置功能时,写入对应的功能码即可。详细如下:

功能码	功能描述
0	【无定义】
0	即不分配任何功能。
	【运行/停止(脉冲)】输入脉冲信号
1	1. 如果当前是停止状态,给脉冲后会启动运行;
	2. 如果当前是运行状态,给脉冲后会停止运行。
2	【运行/停止(电平)】输入电平信号
2	输入有效时启动运行,输入无效时停止运行。
3	【清零】输入脉冲信号
J	给一次脉冲就对重量清一次零。
	【手动供料】输入脉冲信号,仅停止状态下起作用
4	1. 如果供料阀门关闭,给脉冲后打开供料阀门;
	2. 如果供料阀门打开,给脉冲后关闭供料阀门。
	【手动清料】输入脉冲信号,仅停止状态下起作用
5	1. 没清料时,给脉冲后启动清料;
	2. 正清料时,给脉冲后停止清料。
6	【供料门开到位】仅电机供料方式时有效
7	【供料门关到位】仅电机供料方式时有效
	【清报警】输入脉冲信号
8	1. 当前有报警时,给脉冲会清除报警;
	2. 当前无报警时,给脉冲无效,会被忽略。
	【开关量供料】输入电平信号,运行时才起作用
9	1. 当输入有效时,通知仪表进入供料状态;
	2. 当输入无效时,通知仪表退出供料状态。
10	【变频器故障】
	输入有效时,表示变频器发生故障,此时:

	1. 如果是停止状态,则不能启动运行;
	2. 如果是运行状态,则报警并停机。
11	【工位】
11	此功能已不可使用。
12	【逻辑触发1】
12	逻辑编程功能。
13	【逻辑触发 2】
10	逻辑编程功能。
14	【逻辑触发 3】
14	逻辑编程功能。
15	【逻辑触发 4】
10	逻辑编程功能。
16	【逻辑触发 5】
10	逻辑编程功能。
17	【逻辑触发 6】
11	逻辑编程功能。
	【允许运行】输入电平信号
18	1. 输入有效时可以启动运行,输入无效时禁止启动运行;
	2. 运行时如果变为无效,立即停止运行。
19	【工位扫描】
13	此功能已不可使用。
	【运行】输入脉冲信号
20	1. 停止状态下,给脉冲会启动运行;
	2. 运行状态下,给脉冲无效,会被忽略。
	【停止】输入脉冲信号
21	1. 运行状态下,给脉冲会停止运行;
	2. 停止状态下,给脉冲无效,会被忽略。
22	【出料门关到位】仅在脉冲控制电机方式下使用

4.2 输出开关量定义与功能

序号	参数	说明	初值
3.2	输出开关量		
3.2.1	OUT1		1. 运行/停止
3.2.2	OUT2	开关量输出口功能定义。 选项列表详见下表	2. 变频器启停
3.2.3	OUT3		3. 供料
3.2.4	OUT4		4. 供料不足
3.2.5	OUT5		5. 供料充足

每一个输出开关量的功能都可以设定,设置功能可以通过显示按键实现,也可以通过 Modbus 通信实现,通过 Modbus 通信设置功能时,写入对应的功能码即可。详细如下:

功能码	功能描述			
0	【无定义】;即不分配任何功能。			
	【运行/停止】			
1	1. 输出有效时表示当前正在运行;			
	2. 输出无效时表示当前处于停止状态。			
2	【变频器启停】			
2	变频器的选通信号,用于控制变频器的启动和停止。			
3	【供料】			
3	供料阀门的开启和关闭信号。			
	【供料不足】			
4	1. 当前重量低于供料下限重量时,输出该信号;			
	2. 当前重量等于或高于供料下限重量时,关闭该信号。			
	【供料充足】			
5	1. 当前重量等于或高于供料上限重量时,输出该信号;			
	2. 当前重量低于供料上限重量时,关闭该信号。			
6	【供料过低警示】			
	1. 当前重量低于供料过低警示重量时,输出该信号;			

	2. 当前重量等于或高于供料过低警示重量时,关闭该信号。
7	【供料超时】;当发生供料超时报警时,该信号输出有效。
8	【供料方向】仅电机供料方式时有效
	【报警】
9	1. 发生报警时,输出该信号;
	2. 清除报警时,关闭该信号。
	【定量完成】
10	1. 定量完成后,输出该信号;
	2. 停止运行、清报警、定量参数改变,都会关闭该信号。
11	【搅拌输出】
	用于控制计量斗内的防架桥搅拌机构。
	【人工误触碰】
12	1. 发生误触碰干扰时,输出该信号;
	2. 误触碰干扰消失时,关闭该信号。
	【变频器故障】
13	1. 输入变频器故障有效时,输出该信号;
	2. 输入变频器故障无效时,关闭该信号。
14	【累计脉冲】;没完成一次累计重量,输出该信号,持续
1.5	0.5s。
15	【逻辑输出1】逻辑编程功能。
16	【逻辑输出 2】逻辑编程功能。
17	【逻辑输出 3】逻辑编程功能。
18	【逻辑输出 4】逻辑编程功能。
19	【逻辑输出 5】逻辑编程功能。
20	【逻辑输出 6】逻辑编程功能。
21	【用户控制】;由外部设备通过通信控制该信号的输出和关
00	闭状态,以实现自定义控制功能。 【UNIXITATA】(7.4.18)**#**********************************
22	【出料门方向】仅在脉冲控制电机方式下使用

五. 硬件模块

5.1 RS232/RS485

SG590具备一路RS232通信和一路RS485通信,RS232 和RS485可分别单独设置:通信地址、波特率、数据格式,通信协议。相关参数如下:

4.1 RS232			
序号	参数	说明	初值
4.1.1	通信地址	0~99	1
	波特率	0: 4800 1: 9600	3: 38400
4.1.2		2: 19200 3: 38400	
		4: 57600 5: 115200	
4.1.3	数据格式	0: 7-E-1 1: 7-0-1 2: 8-N-1 3: 8-E-1 4: 8-0-1	2: 8-N-1
4. 1. 4	通信协议	0: Modbus-RTU-H 1: Modbus-RTU-L	0: Modbus-RTU-H

4.2 RS485				
序号	参数	说明	初值	
4. 2. 1	通信地址	0~99	1	
4. 2. 2	波特率	0: 4800	2 20400	
4. 2. 2		1: 9600	3: 38400	

		2: 19200	
		3: 38400	
		4: 57600	
		5: 115200	
		0: 7-E-1	
		1: 7-0-1	
4. 2. 3	数据格式	2: 8-N-1	2: 8-N-1
		3: 8-E-1	
		4: 8-0-1	
4. 2. 4	通信执议	0: Modbus-RTU-H	0: Modbus-RTU-H
4. 2. 4	通信协议	1: Modbus-RTU-L	O: MOGDUS-KIU-H

- 1.【通信地址】可设置范围: 0-99。
- 2.【波特率】可选择: 4800, 9600, 19200, 38400, 57600, 115200。
- 3. 【数据格式】可选择: 7-E-1, 7-O-1, 8-N-1, 8-E-1, 8-O-1。
- 4. 【通信协议】可选择: Modbus-RTU-H, Modbus-RTU-L。H 和 L 的区别在于对 32 位数据的地址顺序的处理不同,比如在地址 40001-40002 传输 0x11223344 时,传输的结果如下:

Modbus-RTU-H

40001	0x1122
40002	0x3344

Modbus-RTU-L

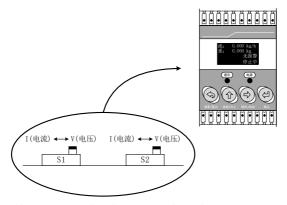
40001	0x3344
40002	0x1122

5.2 输出模拟量

5.2.1 输出范围设置

SG590 最多支持两路输出模拟量,输出范围有如下可选:

- 1.0~5V:
- 2.0~10V;
- 3.4~20mA:
- 4.0~20mA:


5.0~24mA:

- 6. 电压自定义,用于定义特殊的输出范围,比如 1-5V:
- 7. 电流自定义,用于定义特殊的输出范围,比如 4-24mA。

输出模拟量在出厂时已经按照用户的需求设置好,但有需求时用户也可以自行设置,比如将电流输出改为电压输出。设置分两个步骤,如下:

(2) 步骤 1: 硬件拨码

需要先在硬件上拨码选通为电压输出还是电流输出,两路模拟量可单独拨码,拨码方法见下图和说明:

上图箭头位置的散热栅里面,有两个拨码开关,开关 S1 对应输出模拟量 1,开关 S2 对应输出模拟量 2。开关拨到左边时选通电流输出,开关拨到右边时选通电压输出。

(2) 步骤 2: 参数设置

硬件选通后,还需要在参数上设置具体的输出范围,比如 4-20mA,或者 0-10V。操作按键进入输出范围设置即可,输出模拟量 1 是菜单项"4.3.1输出范围",输出模拟量 2 是"4.4.2"。

5.2.2 输出自定义

特殊应用需要特殊的模拟量输出范围时,可以自定义输出范围, 比如 1-5V,或者 4-24mA。

(1) 电压自定义

当需要特殊的电压输出范围时,可进行电压自定义,定义步骤如下(以模拟量1自定义为1-5V为例):

- 1. 将"4.3.1 输出范围"设置为"电压自定义";
- 2. 将"4.3.2 自定义下限"设置为: 1.000V;
- 3. 将"4.3.3 自定义上限"设置为: 5.000V。

(2) 电流自定义

当需要特殊的电流输出范围时,可进行电流自定义,定义步骤如下(以模拟量 2 自定义为 4-24mA 为例):

- 1. 将"4.4.1 输出范围"设置为"电流自定义";
- 2. 将"4.4.2 自定义下限"设置为: 4.000mA;
- 3. 将"4.4.3 自定义上限"设置为: 24.000mA。

六. 功能参数

	5 功能参数			
序号	参数	说明	初值	
5. 1	供料方式	0: 电磁阀 1: 电机周转 2: 电机正反转	0: 电磁阀	
5. 2	供料开门时间	0.0s~99.9s 0.5s		
5. 3	供料开门报警 时间	0.0s∼99.9s	2. 0s	
5. 4	供料关门报警 时间	0.0s∼99.9s	2. 0s	
5. 5	供料开门方向 定义	输出无效时开门 输出有效时开门	输出无效时开门	
5. 6	手动清料模拟 量	0%~100%	50%	

5. 7	测试波形开关	已关闭	口头阳
5. 7		已开启	已关闭
5.8	测试波形幅度	0~100	0
5. 9	测试波形周期	0.0s~8.0s	0.0s
5. 10	搅拌模式	先无效-后有效	先无效-后有效
5. 10		先有效-后无效	元儿双
5. 11	搅拌前段时间	0.0~999.9	0.0
5. 12	搅拌前段时间	s, m, h	
5, 12	单位	S, III, II	S
5. 13	搅拌后段时间	0.0~999.9	0.0
5. 14	搅拌后段时间		
	单位	s, m, h	S

6.1 供料机构

供料机构用于设置供料的结构方式等参数。

1 供料方式

进入菜单项 "6.1 供料方式", 有如下选项:

- 电磁阀。该方式下就输出一个开关量信号,供料时输出信号,关闭 供料就停止输出信号;
- 2. 电机周转。控制普通电机转一周的供料方式:
- 2.1. 必须定义(供料门关到位)作为电机关门原点开关:
- **2.2.** 系统上电后,如果供料门不在关门原点位置,则会控制电机转到关门原点处:
- 2.3. 在关门时,料门到达关门原点后,会停止电机转动。如果经过 【关门报警时间】还未到达关门原点,则停止电机转动并报 警,报警内容为"供料关门原点故障"。如果"关门报警时间" 设置为 0,则报警不起作用,电机会一直转动,直到检测到关 门原点;
- **2.4.** 在开门时,料门离开关门原点之后,才开始计时,计时到达 【供料开门时间】后认为供料门完全打开,停止电机转动;

- 2.5. 在开门时,如果经过【开门报警时间】后,料门仍然未离开关门原点,则认为开门失败,停止电机转动并报警,报警内容为"供料开门失败"。如果【开门报警时间】设置 0,则报警不起作用,电机会一直转动,直到离开关门原点;
- 2.6. 如果定义有(供料门开到位)开关,则采用开到位检测,只有 检测到开到位后才停止电机转动,【供料开门时间】不起作用;
- 2.7. 如果定义有(供料门开到位),则在输出电机转动信号后,经过 【开门报警时间】仍然未达到开门位置,则停止电机转动并报 警,报警内容为"供料开门原点故障"。如果【开门报警时间】 为0,则报警不起作用,电机会一直转,直到达到开门位置;
- **2.8.** 如果检测到当前处在关门原点位置,则不响应任何关门命令和动作;
- 2.9. 如果定义有(供料门开到位)"",而且检测到当前处在开门位置,则不响应任何开门命令和动作;
- 2.10. 因为是电机转一周的控制方式,所以不管关门还是开门,输出的方向信号都是相同的。但是方向信号却是可定义的,"无效-开门"表示输出无效的时候对应开门方向,"有效-开门"表示输出有效的时候对应开门方向。
- 3. 电机正反转。控制普通电机正转/反转的供料方式:
- 3.1. 必须定义(供料门关到位)作为电机关门原点开关;
- 3.2. 系统上电后,如果供料门不在关门原点位置,则会控制电机转 到关门原点处;
- 3.3. 在关门时,料门到达关门原点后,会停止电机转动。如果经过 【关门报警时间】还未到达关门原点,则停止电机转动并报 警,报警内容为"供料关门原点故障"。如果【关门报警时间】 设置为 0,则报警不起作用,电机会一直转动,直到检测到关 门原点:
- 3.4. 在开门时,料门离开关门原点之后,才开始计时,计时到达 【供料开门时间】后认为供料门完全打开,停止电机转动;
- 3.5. 在开门时,如果经过【开门报警时间】后,料门仍然未离开关

门原点,则认为开门失败,停止电机转动并报警,报警内容为"供料开门失败"。如果【开门报警时间】设置 0,则报警不起作用,电机会一直转动,直到离开关门原点;

- 3.6. 如果定义有(供料门开到位)开关,则采用开到位检测,只有 检测到开到位后才停止电机转动,【供料开门时间】不起作用;
- 3.7. 如果定义有(供料门开到位),则在输出电机转动信号后,经过 【开门报警时间】仍然未达到开门位置,则停止电机转动并报 警,报警内容为"供料开门原点故障"。如果【开门报警时间】 为0,则报警不起作用,电机会一直转,直到达到开门位置;
- **3.8.** 如果检测到当前处在关门原点位置,则不响应任何关门命令和动作:
- 3.9. 如果定义有(供料门开到位),而且检测到当前处在开门位置,则不响应任何开门命令和动作:
- 3.10. 开门方向可定义,"无效-开门"表示输出无效的时候对应开门方向,"有效-开门"表示输出有效的时候对应开门方向;
 - (2) 相关参数

跟供料机构有关的参数和参数所在菜单项如下:

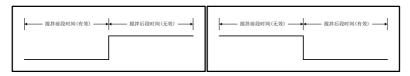
- 1. 菜单项 "5.1 供料方式";
- 2. 菜单项 "5.2 供料开门时间";
- 3. 菜单项"5.3 供料开门报警时间";
- 4. 菜单项"5.4 供料关门报警时间":
- 5. 菜单项"5.5 供料开门方向定义"。

各个参数的作用见"(1)供料方式"里面的描述。

6.2 手动清料

当需要清空计量斗内的物料时,可以使用手动清料功能。可以通过通信发送手动清料命令,也可以通过输入开关量给手动清料命令。 用输入开关量给手动清料命令时,需要在输入开关量定义一个(手动清料),再接一个脉冲开关即可。

手动清料的速度可以设置,菜单项"5.6 手动清料模拟量"用于


设置清料速度,设置为100%时清料速度最快。

6.3 架桥搅拌

如果需要隔一段时间输出一个信号控制搅拌,既需要输出波形的 场合,可以使用架桥搅拌功能。持续的搅拌不需要使用该功能,接线 上让信号一直导通就能实现持续搅拌。

搅拌功能只在运行时才有效,停止时没输出。参数说明如下:

- 1. 【搅拌模式】。在菜单项"5.10搅拌模式",有如下选项:
 - **1.1.** 先无效-后有效。在输出波形时,先输出无效,再输出有效;
 - **1.2.** 先有效-后无效。在输出波形时,先输出有效,再输出无效。
- 2. 【搅拌前段时间】。当搅拌模式为"先无效-后有效"时,该时间是输出无效时间;当搅拌模式为"先有效-后无效"时,该时间是输出有效时间;
- 3. 【搅拌前段时间单位】时间单位可设置,有: s(秒), m(分钟), h(小时);
- 4.【搅拌后段时间】。当搅拌模式为"先无效-后有效"时,该时间是输出有效时间;当搅拌模式为"先有效-后无效"时,该时间是输出无效时间;
- 5. 【搅拌前段时间单位】时间单位可设置,有: s(秒), m(分钟), h(小时)。

七. 配方功能

7.1 配方号

有些设备可能需要在不同时期生产不同的物料,而这些物料的比重、目标流量等都不同,对应的参数值也不同。为了防止每换一次物料参数都需要重新设置的情况,可以采用配方功能。

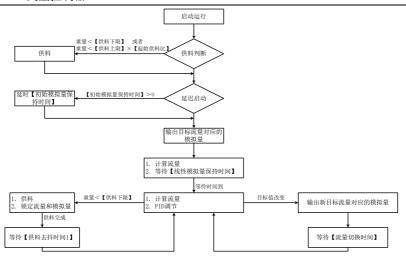
举例说明,假设第一天生产物料 A,第二天生产物料 B,第三天生产物料 A,第四天生产物料 B,如此循环。则过程如下:

第一天生产物料 A,选择配方号 1,设置好物料 A 的相关参数,比如目标流量、配比等,然后生产物料 A;

第二天生产物料 B,选择配方号 2,设置好物料 B的相关参数,比如目标流量、配比等,然后生产物料 B。因为此时配方号是 2,跟配方 1 不冲突,不会跟配方 1 的参数重叠:

第三天生产物料 A,因为第一天已经设置好了配方 1 用于生产物料 A,此时只需要将配方号修改为 1,然后直接生产即可,会自动调出配方 1 的参数用于物料 A 的生产;

第四天生产物料 B, 因为第二天已经设置好了配方 2 用于生产物料 B, 此时只需要将配方号修改为 2, 然后直接生产即可, 会自动调出配方 2 的参数用于物料 B 的生产。


SG590最多支持10组配方,可应对10个不同的应用场合。

7.2 工作模式

菜单项 "6.2.1 工作模式",工作模式有三种选择,分别是连续标准、模拟量联动、模拟量主控。

7.2.1 连续标准模式

连续标准模式是标准的失重控制模式,其工作流程如下图所示:

7.2.2 模拟量联动模式

该模式就是由输入模拟量来实时设定目标流量的工作模式。 举例说明:

假如输入模拟量范围为 0-10V,【输入模拟量最小值对应的流量】设置为 0kg/h,【输入模拟量最大值对应的流量】设置为 100kg/h,那么当输入模拟量为 5V 时, $\frac{5V\times100\%}{10V}$ = 50%,目标流量= $\frac{50\%\times100kg/h}{100\%}$ = 50kg/h。在运行过程中,会自动进行 PID 调节,使得实时流量稳定在 50kg/h 附近。

当 输 入 模 拟 量 为 2V 时 , $\frac{2V \times 100\%}{10V} = 20\%$, 目 标 流 量 = $\frac{20\% \times 100 kg/h}{100\%} = 20 kg/h$ 。在运行过程中,会自动进行 PID 调节,使得实时流量稳定在 20 kg/h 附近。

7.2.3 模拟量主控模式

该模式下不进行 PID 调节,由输入模拟量控制流量,控制方法为

直接映射。比如输入模拟量为 4~20mA,输出模拟量为 0~10V。在运行过程中,如果当前输入模拟量为 12mA,即输入模拟量量程的 50%,那么输出模拟量为输出量程的 50%,10V*50% = 5V。

7.2.4 容积模式

【容积模式】也叫【定频模式】,固定输出模拟量、并固定显示流量,不调节 PID。

举例说明:

假设【标定流量】设置为 50kg/h,【标定模拟量】设置为 50%。那么当【目标流量】设置为 80kg/h 时,固定输出 80%的模拟量,显示的流量也固定显示为 80kg/h。

7.3 给定流量、分流比、目标流量

【给定流量】用户设置的、期望的流量值,在菜单项"6.2.2 给定流量"。

【分流比】既配比、占比,在菜单项"6.2.5 分流比"。 有两种流量应用模式:配比模式,独立流量模式。

7.3.1 配比模式

配比模式用于生产混合物料,比如要生产混合物料 100kg/h, 其中物料 A 占比 70%, 物料 B 占比 30%。那么物料 A 和物料 B 的设置如下:

(1) 物料 A

【给定流量】=100kg/h,【分流比】=70%,最后物料 A 的目标流量=【给定流量】×【分流比】=100kg/h×70%=70kg/h。

(2) 物料 B

【给定流量】=100kg/h,【分流比】=30%,最后物料 B 的目标流量=【给定流量】×【分流比】=100kg/h×30%=30kg/h。

配比模式存在一个问题,即在启动运行时,有些通道没有物料需

要先供料再启动,有些通道物料充足可以直接启动,于是造成启动时配比错误的情况。解决这个问题,可以使用多组分同步功能,使用方法如下:

- 1. 将所有通道的参数【多组分同步开关】打开,即"6.2.11 多组分同步开关"设置为"已打开";
- 2. 通过通信读取所有通道的 Modbus 地址 40043, 当所有通道的 40043 都为 1 时, 说明所有通道的物料都可以启动:
- 3. 将所有通道的 40043 清零,即写入 0,所有通道将同时启动运行。

40043	0042	【多组分准备就绪】(可读/可写)	
		当读出为1时,表示已经供料完成或者物料充足,清零启动出料。	

7.3 给定流量、分流比、目标流量

【给定流量】用户设置的、期望的流量值,在菜单项"6.2.2给定流量"。

【分流比】既配比、占比,在菜单项"6.2.5 分流比"。 有两种流量应用模式:配比模式,独立流量模式。

7.3.1 配比模式

配比模式用于生产混合物料,比如要生产混合物料 100kg/h, 其中物料 A 占比 70%, 物料 B 占比 30%。那么物料 A 和物料 B 的设置如下:

(1) 物料 A

【给定流量】=100kg/h,【分流比】=70%,最后物料 A 的目标流量=【给定流量】×【分流比】=100kg/h×70%=70kg/h。

(2) 物料 B

【给定流量】=100 kg/h,【分流比】=30%,最后物料 B 的目标流量=【给定流量】×【分流比】= $100 kg/h \times 30\% = 30 kg/h$ 。

配比模式存在一个问题,即在启动运行时,有些通道没有物料需

要先供料再启动,有些通道物料充足可以直接启动,于是造成启动时配比错误的情况。解决这个问题,可以使用多组分同步功能,使用方法如下:

- 1. 将所有通道的参数【多组分同步开关】打开,即"6.2.11 多组分同步开关"设置为"已打开";
- 2. 通过通信读取所有通道的 Modbus 地址 40043, 当所有通道的 40043 都为 1 时, 说明所有通道的物料都可以启动:
- 3. 将所有通道的 40043 清零,即写入 0,所有通道将同时启动运行。

40043	0042	【多组分准备就绪】(可读/可写)	
		当读出为1时,表示已经供料完成或者物料充足,清零启动出料。	

7.3.2 独立流量模式

独立流量模式就是每个SG590独立对应一台设备,跟其他设备 无关。该模式下,【分流比】必须设置为 100.00%。同时,目标流量就等于【给定流量】。

7.3.3 流量单位和流量小数点

流量单位在菜单项 "6.2.3 给定流量单位", 有如下选项:

- (1) g/m: 克/分钟;
- (2) g/h: 克/小时;
- (3) kg/m: 千克/分钟;
- (4) kg/h: 千克/小时;
- (5) t/m: 吨/分钟;
- (6) t/h: 吨/小时。

流量小数点在菜单项 "6.2.4 给定流量小数点", 有如下选项:

- (1) 00000: 无小数点:
- (2) 0000.0: 1位小数点;
- (3)000.00:2位小数点;
- (4) 00.000: 3 位小数点:

(5) 0.0000: 4 位小数点。

7.4 生产产量

生产产量有两种方式,一种是完成指定重量的产量,通过参数【定量重量】实现;一种是完成指定时间的产量,通过参数【定量时间】实现。

(1) 完成指定重量的产量

举例:

假设在目标流量 10.000kg/h 运行时,累计出料 500.0kg 后自动停机并报警。那么设置的参数如下(注意例子中的小数点位数):

【给定流量】100.000:

【给定流量单位】kg/h;

【给定流量小数点】00.000;

【定量重量】500.0:

【定量重量单位】kg;

【定量重量小数点】0000.0。

按上面参数设置好后启动运行,目标流量会保持 10.000kg/h, 待累计出料 500.0kg 后,【定量重量】完成,自动停机并发生"定量完成"报警,(报警)信号和(定量完成)信号有输出,清报警时会关闭(报警)信号和(定量完成)信号。

(2) 完成指定时间的产量

举例:

假设在目标流量 10.000kg/h 运行时,累计出料 12 小时后自动停机并报警。那么设置的参数如下(注意例子中的小数点位数):

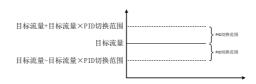
【给定流量】100.000;

【给定流量单位】kg/h;

【给定流量小数点】00.000;

【定量时间】12.0;

【定量时间单位】h。


按上面参数设置好后启动运行,目标流量会保持 10.000kg/h, 待累计出料 12.0h 后,【定量时间】完成,自动停机并发生"定量完成"报警,(报警)信号和(定量完成)信号有输出,清报警时会关闭(报警)信号和(定量完成)信号。

7.5 PID 设置

为了让流量稳定在设定的目标流量附近,SG590会实时调节模拟量的输出,而调节的方法,就是 PID 调节。PID 有两种模式,一是标准模式,二是双 PID 模式。PID 参数也有两套,分别是 PID1 和 PID2。当 PID 使用标准模式时,只使用 PID1 参数。当 PID 使用双 PID 模式时,使用 PID1 和 PID2 两套参数, PID1 对应细调, PID2 对应粗调。

PID 参数在菜单项"6.3 PID 设置",各参数如下:

- 1. 【PID 模式】可选"标准模式"和"双 PID 模式":
- 2. 【PID 切换范围】目标流量的百分比;
- 3. 【PID 粗调到微调切换时间】如下图所示,当实时流量进入图的两条虚线范围之间、并持续【PID 粗调微调切换时间】后,PID 切换到微调模式;

- 4. 【PID 微调到粗调切换时间】如图所示,当实时流量低于下虚线或者高于上虚线、并持续【PID 微调到粗调切换时间】后,PID 切换到粗调模式;
- 5. 【PID1 比例系数】PID1 的比例环节,成比例的反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差(比例越大控制越快);

- 6. 【PID1 积分时间】PID1 的积分环节,主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数,积分时间越长,积分作用越弱,反之则越强(积分时间越小,控制越快);
- 7. 【PID1 微分时间】PID1 的微分环节,反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正,从而加快系统的动作速度,减少调节时间(微分时间越大,控制越快);
 - 8. 【PID1 控制周期】PID1 更新模拟量输出的时间间隔;
- 9. 【PID2 比例系数】PID2 的比例环节,成比例的反映控制系统的偏差信号,偏差一旦产生,控制器立即产生控制作用,以减少偏差(比例越大控制越快);
- 10. 【PID2 积分时间】PID2 的积分环节,主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数,积分时间越长,积分作用越弱,反之则越强(积分时间越小,控制越快);
- 11. 【PID2 微分时间】PID2 的微分环节,反映偏差信号的变化 趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一 个有效的早期修正,从而加快系统的动作速度,减少调节时间(微分时间越大,控制越快);
 - 12. 【PID2 控制周期】PID2 更新模拟量输出的时间间隔。

在控制器运行的时候,如果打开双 PID 功能,则控制器开始运行的时候将使用粗调 PID2,使得流量迅速接近目标值,如果实际流量已经到达设定的范围并且维持了设定的时间以后,控制器将切换到微调 PID1 控制。当用户修改流量目标值,或则流量的误差大于设定的范围并且维持了设定的时间以后,控制器将重新使用粗调 PID2 控制,以使得快速的将实际流量控制在目标值左右。

7.6 模拟量功能

SG590 最多支持两路模拟量输出,每一路的作用都可以单独设置,菜单项"6.4.1 模拟量1功能定义"和菜单项"6.4.2 模拟量2功

能定义",可选功能如下:

- 1. 流量控制。用于调节变频器频率,控制流量;
- 2. 流量显示。用于将当前实时流量输送出去;
- 3. 重量显示。用于将当前实时重量输送出去。

7.6.1 流量控制

模拟量输出用于流量控制时,送到变频器控制频率,与流量控制相关的还有如下参数:

- 1. 【调节模拟量输出下限】用于限制变频器频率的下限,在菜单项"6.4.7调节模拟量输出下限":
- 2. 【调节模拟量输出上限】用于限制变频器频率的上限,在菜单项"6.4.8调节模拟量输出上限":
- 3. 【模拟量最大调整量】用于限制每次调节时的最大改变频率, 在菜单项"6.4.9 模拟量最大调整量"。

7.6.2 流量显示

当模拟量用于流量显示时,需要设置两个参数:

- 1. 【显示模拟量最小值流量】模拟量输出最小值时,对应的流量 是多少:
- 2. 【显示模拟量最大值流量】模拟量输出最大值时,对应的流量 是多少。
- 举例 1: 假设模拟量输出范围是 0-10V,设置【显示模拟量最小值流量】为 0.00kg/h,也即是模拟量输出 0V 时对应的流量为 0.00kg/h;设置【显示模拟量最大值流量】为 100.00kg/h,也即是模拟量输出 10V时对应的流量为 100.00kg/h。那么当实时流量为 50.00kg/h 时,模拟量输出 5V。
- 举例 2: 假设模拟量输出范围是 4-20mA,设置设置【显示模拟量最小值流量】为 0.00kg/h,也即是模拟量输出 4mA 时对应的流量为 0.00kg/h;设置【显示模拟量最大值流量】为 100.00kg/h,也即是模拟量输出 20mA 时对应的流量为 100.00kg/h。那么当实时流量为

50.00kg/h 时,模拟量输出 12mA。

7.6.3 重量显示

当模拟量用于重量显示时,需要设置两个参数:

- 1. 【显示重量下限】即模拟量输出最小值时对应的重量是多少, 在菜单项 "6.4.5 显示重量下限":
- 2. 【显示重量上限】即模拟量输出最大值时对应的重量时多少, 在菜单项"6.4.6显示重量上限"。

举例 1: 假设模拟量输出范围是 0-10V,设置【显示重量下限】为 0.00kg,也即是模拟量输出 0V 时对应的重量为 0.00kg;设置【显示重量上限】为 100.00kg,也即是模拟量输出 10V 时对应的重量为 100.00kg。那么当实时重量为 50.00kg 时,模拟量输出 5V。

举例 2: 假设模拟量输出范围是 4-20mA,设置【显示重量下限】为 0.00kg,也即是模拟量输出 4mA 时对应的重量为 0.00kg;设置【显示重量上限】为 100.00kg,也即是模拟量输出 20mA 时对应的重量为 100.00kg。那么当实时重量为 50.00kg 时,模拟量输出 12mA。

7.7 供料设置

SG590 模块支持三种类型的供料功能:自动供料,开关量供料, 手动供料。

(1) 自动供料设置

自动供料指运行过程中由程序自动控制什么时候开始供料、什么时候停止供料的方式。其相关参数有起始供料比、开始供料重量、停止供料重量等。

- 1. 【起始供料比】假如起始加料比设置为 70%,【供料上限】 设置为 100kg,那么在启动运行的时候,如果当前重量值低于 70kg(100kg x 70%)时,先启动供料,供料完成后再运行。如果当前重量值高于 70kg,则不供料,而是直接运行;
 - 2. 【供料下限】当重量值低于该值,启动供料机构向计量斗内

供料;

- 3. 【供料上限】当重量值高于该值,停止供料,关闭供料门;
- 4. 【供料过低警示重量】当重量值低于该值,输出(供料过低警示)信号,需要注意的是,这不是报警,也不会引起报警,仅仅只是输出(供料过低警示)信号;
- 5. 【供料超时时间】指启动供料机构向计量斗内供料后,如果 超过该时间后,重量值还未达到【供料上限】,就会启动报警:
- 6. 【供料超时报警控制】用于决定供料超时后,是否报警。可选项有: 1.关闭,即不报警; 2.报警继续,即一边报警一边继续供料; 3.报警停机,即停止运转并报警; 4.不报警恢复,不产生报警,恢复调节;
- 7. 【供料去抖时间 1】供料完成后,等待这个时间后再恢复流量计算和 PID 调节,以避过重量震荡区间;
- 8. 【供料去抖时间 2】和【供料去抖时间 1】的区别时,【供料去抖时间 1】锁定流量和模拟量,而【供料去抖时间 2】只锁定流量,但 PID 恢复调节,模拟量会改变。【供料去抖时间 1】之后就是【供料去抖时间 2】,设置为 0 关闭。

(2) 开关量供料设置

用户可以在外部接一个旋钮开关到输入开关量,输入开关量定义为(进入/退出供料)。当需要供料时,旋转开关使其导通, SG590模块会锁定流量和模拟量,进入供料状态,然后用户可以 随意往计量斗里面添加物料。当物料添加完毕,旋转开关使其断 开,SG590模块会退出供料状态,回到正常工作流程。

(3) 手动供料设置

在运行过程中,如果需要以人工的方式直接往计量斗里面添加物料,需要打开手动供料功能。设置【手动供料进入时间】和【手动供料退出时间】两个参数均为非0值:

在【手动供料进入时间】内重量值一直增加时,表明有人工在添加物料,此时程序会自动进入手动供料状态

在【手动供料退出时间】内重量值一直减少时,表明人工添加

物料完成,此时程序会自动退出手动供料状态

若要关闭手动供料功能,将上面两个时间值任何一个设置为 0 即可。

(4) 停止状态下的供料

在停止状态下,可以使用开关量来启动供料。在输入开关量定义(手动供料),给一个脉冲,模块会启动供料,再给一个脉冲则会停止供料。如果不给停止供料脉冲,则物料加满到【供料上限】后,会自动停止供料。停止状态下供料时,会禁止启动运行。

7.8 流量监测

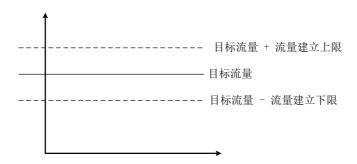
序号	参数	设置范围	初值
6. 6. 1	流量超差	0~99999999	0
6. 6. 2	流量欠差	0~99999999	0
6. 6. 3	流量超差容忍时间	0.0s∼9.9s	0.0s
6. 6. 4	流量欠差容忍时间	0.0s∼9.9s	0.0s
6. 6. 5	超欠差报警模式	报警停机	报警停机
		报警继续	
6. 6. 6	流量建立下限	0~99999999	0
6. 6. 7	流量建立上限	0~99999999	0
6. 6. 8	流量建立时间	0.0s~6000.0s	0.0s
6. 6. 9	误触碰范围	0~60000	0
6. 6. 10	误触碰时间	0.0s∼99.9s	0.5s
6. 6. 11	不稳不调 PID	继续调节	继续调节
		不调节	
6. 6. 12	误触碰恢复时间	0.0s~6000.0s	3.0s
6. 6. 13	误触碰滤波等级	0~9	3

7.8.1 超欠差

超欠差用于监控实时流量是否在规定的范围内,相关参数如

下:

- 1. 【流量超差】当前流量>目标流量+流量超差值时,认为是超差,在菜单项 "6.6.1 流量超差":
- 2. 【流量欠差】当前流量<目标流量-流量欠差值时,认为是欠差,在菜单项"6.6.2 流量欠差";
- 3. 【流量超差容忍时间】指能容忍出现流量超差的持续时间, 当流量超差时间超出此时间则报警,在菜单项"6.6.3 流量超差容忍 时间":
- 4. 【流量欠差容忍时间】指能容忍出现流量欠差的持续时间, 当流量欠差时间超出此时间则,在菜单项"6.6.4 流量欠差容忍时 间";
- 5. 【超欠差报警模式】可选择"报警停机"和"报警继续"。 选择"报警停机"时,发生超欠差报警后停止出料;选择"报警继 续"时,发生超欠差报警后继续出料。在菜单项"6.6.5 超欠差报警 模式"。


7.8.2 流量建立监控

流量建立是指从"启动运行→目标流量"的这一过程,如果需要 监控这一过程是否正常,可以用流量建立监控功能。当在设定的时间 内,流量未达到设定的范围,则启动报警。

流量建立监控功能有3个参数:

- 1. 【流量建立下限】用于定义"目标流量-流量建立下限"区域,如果设置为0,则不使用下限区域。在菜单项"6.6.6 流量建立下限";
- 2. 【流量建立上限】用于定义"目标流量 + 流量建立上限"区域,如果设置为 0,则不使用上限区域。在菜单项"6.6.7 流量建立上限":
- 3. 【流量建立时限】从启动运行到规定区域的限定时间,如果设置为 0,则关闭流量建立监控功能。在菜单项"6.6.8 流量建立时限":

另外,如果【流量建立下限】和【流量建立上限】都设置为 0,则同样会关闭流量建立监控功能。

7.8.3 误触碰功能

触碰功能用于检测外部作用力的干扰,并设法抵消这种干扰的影响。该功能有 5 个相关参数:【误触碰范围】,【误触碰时间】,【不稳定不调 PID】开关,【误触碰恢复时间】,【误触碰滤波等级】。

其工作原理为:在正常工作过程中,如果重量值的变化超过【误触碰范围】并持续【误触碰时间】,则认为干扰发生。如果【不稳定不调 PID】开关打开,则会锁定流量和模拟量不变。当干扰消失后,经过【误触碰恢复时间】,则恢复流量计算和模拟量调节。【误触碰滤波等级】是专用于触碰功能的滤波等级,其设置要比基本称重参数界面的【滤波等级】小,最好小于5以下。

干扰发生后,会在开关量输出(人工误触碰)信号,干扰消失后(人工误触碰)信号也会消失。Modbus 地址表里的(1)快速访问区里的【系统标志2】里面也有相关的标志。

7.8.4 欠载重量

在运行过程中,当重量值低于【欠载重量】并持续1秒后,停机 并报警。【欠载重量】为0时,关闭此功能。

7.9 流量标定

在启动运行时,要达到目标流量(比如 100kg/h),那应该输出多少模拟量?流量标定的作用,就是建立模拟量和流量的对应关系。比

如标定模拟量 5%对应流量 10kg/h, 那么当目标流量为 100kg/h 时, 就知道输出的模拟量为 50%。

流量标定可以人工进行,也可以由SG590自动进行。人工进行标定能提高刚装机完成后的第一次启动速度,而 SG590 自动进行标定的第一次启动速度较慢。自动标定只需要输入目标流量,然后启动运行,等待流量稳定即可。

7.10 启动速度设置

启动运行时,有时候需要延迟启动,有时候需要先输出一个低流量启动,有时候需要直接达到目标流量。实现这些不同的启动速度需求,跟如下三个参数有关:

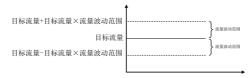
- 1. 【初始模拟量】启动运行的时候输出的模拟量,在菜单项"6.7.1 初始模拟量":
- 2. 【初始模拟量保持时间】初始模拟量输出持续的时间,在菜单项"6.7.2 初始模拟量保持时间";
- 3. 【线性模拟量保持时间】输出目标流量对应的模拟量,然后等待一个【线性模拟量保持时间】之后,才开始 PID 调节。如果当前没有设置【标定流量】和【标定模拟量】,则直接输出【初始模拟量】设置的值,等待一个【线性模拟量保持时间】之后,才开始 PID 调节。

7.10.1 低速启动

为了防止启动时流量过大,使得主机堵塞,需要一个低流量启动过程,此时需要设置【初始模拟量】和【初始模拟量保持时间】、【初始模拟量】设置一个较低的模拟量,然后【初始模拟量保持时间】设置需要的时间即可。

7.10.2 延迟启动

延迟启动是在启动运行后,需要先等待距离更远的产线出料后,再启动本机出料。设置方法是,将【初始模拟量】设置为 0, 然后【初始模拟量保持时间】设置为需要延迟的时间即可。


7.10.3 快速启动

如果启动就需要达到目标流量,需要把【初始模拟量保持时间】 设置为 0,然后设置【线性模拟量保持时间】。

7.11 流程设置

进入菜单项 "6.7 流程设置",可以设置跟流程有关的参数。个 参数说明如下:

- 1. 【初始模拟量保持时间】启动运行时,可以先保持这个时间之后,在进入目标流量和 PID 调节:
- 2. 【初始模拟量】在【初始模拟量保持时间】之内输出的模拟量:
- 3. 【线性模拟量保持时间】启动运行并输出目标流量对应的模拟量之后,再保持这个时间才进行 PID 调节,这有助于让流量更快稳定;
- 4. 【流量切换时间】运行中修改了目标流量并输出新目标流量 对应的模拟量后,再等待这个时间才恢复 PID 调节,这有助于新目标 流量的快速切换;
 - 5. 【流量采样频率】即多长时间采集一次重量值用于计算流量;
- 6. 【流量采样时间】总共用多长时间的、采集到的重量值用于计算流量。举例说明【流量采样频率】和【流量采样时间】的用法:假设【流量采样频率】设置为 0.1s,【流量采样时间】设置为 20s,那么每 0.1s 采集一次重量值、连续采集 20s 的数据用于流量计算;
 - 7. 【流量波动范围】如下图所示:

对流量进行滤波时,在两条虚线之间的流量会被滤波,低于下虚线、高于上虚线的流量不会被滤波:

- 8. 【阳带衰减】流量滤波的效果,数值越大效果越好:
- 9. 【速率因子】流低于下虚线、高于上虚线时流量的变化速度:
- 10. 【流量标定模式】流量标定点有四种设置模式:
 - 10.1. 实时追踪更新。在运行过程中, SG590会实时自动

检测更为精准的标定值,并用更精准的标定值更新标定点; 10.2. 自动固定。在运行过程中,SG590找到精准的标定值并 保存到标定点后,就固化下来不再更新;

- 10.3. 手动输入模式。有人工手动输入标定点:
- 10.4. 供料补偿。在有些场合,计量斗内的重量不同,会影响到流量。比如,计量斗内的为 100kg、输出 10mA 时,流量为 60kg/h;但当重量减少到 30kg、输出依旧是 10mA 时,流量变成 50kg/h。这种情况可以采用供料补偿模式,该模式会随着重量减少,自动调整对应的比例;
- 11. 【标定流量】标定点的流量值:
- 12. 【标定模拟量】标定点的模拟量值;
- 13. 【标定重量】标定点的重量值,仅用于供料补偿模式;
- 14.【标定流量2】第二个标定点的流量值,仅用于供料补偿模式;
- 15.【标定模拟量 2】第二个标定点的模拟量值,仅用于供料补偿模式;
 - 16.【标定重量2】第二个标定点的重量值,仅用于供料补偿模式。

7.12 累计脉冲功能

当需要每流出一定重量输出一个脉冲,可以使用累计脉冲功能。 使用方法如下:

- 1. 输出开关量定义一个(累计脉冲)信号;
- 2. 设置参数【累计脉冲重量】,在菜单项"6.8.1 累计脉冲重量",设置为0时,关闭累计脉冲功能。

举例,设置【累计脉冲重量】为 10kg,那每当出料达到 10kg 时,输出一次(累计脉冲)信号,信号持续 500ms。

7.13 变频器故障检测

当需要检测变频器故障时,在输入开关量定义一个变频器故障信号,并将相关信号接到对应的输入端口上即可。变频器故障有如下功能:

- 1. 启动时如果检测到有故障,则提示,且不能启动运行;
- 2. 运行中检测到有故障时,自动停机并报警。

7.14 逻辑编程

序号	参数	说明	初值
10.1	逻辑编程	1	
7.1.1	逻辑类型	选择逻辑编程的类型。 ①[关闭]:关闭该逻辑输出功能。 ②[延时接通] ③[延时断开] ④[延时接通并延时断开] ⑤[有效-无效跳变沿触发] ⑥[无效-有效跳变沿触发] ⑦[自锁] ⑧[脉冲] 对应功能说明详见 2. 10. 1 章节:	① 关闭
7.1.2	触发类型	①[信号触发]:通过某一个信号来触发该逻辑输出。 ②[条件触发]:通过达到某一个条件来触发该逻辑输出。 ③[通信触发]:通过通信命令来触发该逻辑输出。	①[信号 触发]
7.1.3	信号输出端口	选择该逻辑输出信号定义到某一个 OUT 输出口。	无定义
7.1.4	延时接通	逻辑输出信号延时接通的时间。	0

7.1.5	延时断开	逻辑输出信号延时断开的时间。	0
7.1.6	信号1设 置	选择用来触发逻辑输出的信号1。	无
7.1.7	信号逻辑	选择用来触发逻辑输出的触发信号1和触发信号2之间的逻辑关系。 1. [或]: 触发信号1和触发信号2任意一个信号有效即可触发逻辑输出。 2. [与]: 触发信号1和触发信号2需要全部有效才能触发逻辑输出。 3. [异或]: 触发信号1和触发信号2不同时才能触发逻辑输出。	1. [或]
7.1.8	输出时间	【10.1.1逻辑类型】设置为第5/6项时可设置此参数。逻辑信号触发后输出的有效时间,时间到后结束逻辑输出。此时间设置为0时,逻辑输出信号将只能通过复位信号来结束。	0
7.1.9	复位信号	【10.1.1逻辑类型】设置为第 5/6 项时可设置此参数。逻辑输出有效后,复位信号可复位逻辑输出,使逻辑输出信号无效,结束本次逻辑输出过程。	无
7.1.10	复位逻辑	 [有效复位]:复位信号有效时,复位逻辑输出。 [无效复位]:复位信号无效时,复位逻辑输出。 	1. [有效 复位]
7.1.11	触发条件	选择触发逻辑输出的条件。 1. [重量大于设定值] 2. [重量小于设定值] 3. [重量在区间内] 4. [重量在区间外]	1. [重量 大于定 值]
7.1.12	设定值1	用来设置对应触发条件的重量值。	0

7.1.13	设定值2		0
7.1.14	稳定条件	1. [关闭]: 重量满足触发条件后,并且需要稳定才能触发逻辑输出。 2. [打开]: 重量满足触发条件后即可触发逻辑输出,无需稳定。	1. [关闭]
7.1.15	信号 2 设 置	选择用来触发逻辑输出的信号 2。	无

【附录1】时间与版本

当前版本: v1.01

修改时间: 2023.11.14